

UNIVERSITÀ DEGLI STUDI DI VERONA

LA RIABILITAZIONE INTERDISCIPLINARE

della disabilità complessa fra presente e futuro

La nutrizione nelle malattie cardio-respiratorie: dalla valutazione funzionale alla prescrizione Mauro Zamboni Clinica Geriatrica Università di Verona

24 novembre 2017

Centro congressi "Auditorium Monsignor Capretti"

Alterazioni Nutrizionali nelle Malattie Cardiorespiratorie

sarcopenia malnutrizione cachessia

"Sarcopenia is a term that denotes the decline in muscle mass and strength that occurs with healthy aging."

Rosenberg, Am J Clin Nutr 1989

"Sarcopenia is part of normal aging and does not require a disease to occur, although it is accellerated by chronic diseases."

Roubenoff et al, J Gerontol 2000

An Official American Thoracic Society/European Respiratory Society Statement: Update on Limb Muscle Dysfunction in Chronic Obstructive Pulmonary Disease

François Maltais, Marc Decramer, Richard Casaburi, Esther Barreiro, Yan Burelle, Richard Debigaré, P. N. Richard Dekhuijzen, Frits Franssen, Ghislaine Gayan-Ramirez, Joaquim Gea, Harry R. Gosker, Rik Gosselink, Maurice Hayot, Sabah N. A. Hussain, Wim Janssens, Micheal I. Polkey, Josep Roca, Didier Saey, Annemie M. W. J. Schols, Martijn A. Spruit, Michael Steiner, Tanja Taivassalo, Thierry Troosters, Ioannis Vogiatzis, and Peter D. Wagner; on behalf of the ATS/ERS Ad Hoc Committee on Limb Muscle Dysfunction in COPD

Am J Respir Crit Care Med Vol 189, Iss 9, pp e15-e62, May 1, 2014

Limb muscle dysfunction is defined as the morphological and functional changes that are seen in limb muscles in patients with COPD

Update 1999 American Thoracic Society

Definition

Thigh muscle cross sectional area in COPD and control subjects

Verond

Am J Respir Crit Care Med Vol 158. pp 629-634, 1998

Vastus lateralis biopsies of 15 COPD moderate-severe weight-stable patients and healthy age -matched controls

Type 1 fibers (oxidative)

Type IIX fibers (glycolitic) ★ (atrophic)

Muscle biopsy
Proportion of type-I fibres %
Proportion of type-IIA fibres %
Proportion of type-IIX fibres %
CSA of type-IIX fibres µm ²

Controls	COPD
43.4±12.6	19.4±14.0***
29.4±12.1	34.8±11.9
27.2 ± 12.3	45.8±18.9***
4248 ± 1300	2566±1137**

Eur Resp J 2003; 22: 280-85

Vastus lateralis biopsies of COPD weight-stable patients

Eur Resp J 2003; 22: 280-85

muscle strength in patients with COPD compared to normal subjects

healthy aging center Verong

Am J Respir Crit Care Med Vol 158. pp 629-634, 1998

260 OLD patients 157 smoking controls 866 formerly smoking controls 891 never smoking controls OLD: obstructive lung disease Body composition changes in COPD: 7 -years longitudinal data from the Health ABC Study

Leg Fat Free mass

Body composition changes in COPD: 7 -years longitudinal data from the Health ABC Study

Thorax. 2011 November ; 66(11): 961-969.

healthy aging center

260 OLD patients 157 smoking controls 866 formerly smoking controls 891 never smoking controls OLD: obstructive lung disease

Morphological and structural alterations in limb muscles in COPD patients

Verono

Am J Respir Crit Care Med Vol 189, Iss 9, pp e15-e62, May 1, 2014

Muscle changes observed in COPD meets the criteria of Sarcopenia

Age and Ageing 2010; **39:** 412–423 doi: 10.1093/ageing/afq034 Published electronically 13 April 2010 ©The Author 2010. Published by Oxford University Press on behalf of the British Geriatrics Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nd/2.5/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

REPORT

Sarcopenia: European consensus on definition and diagnosis

Report of the European Working Group on Sarcopenia in Older People Alfonso J. Cruz-Jentoft¹, Jean Pierre Baeyens², Jürgen M. Bauer³, Yves Boirle⁴, Tommy Cederholm⁵, Francesco Landi⁶, Finbarr C. Martin⁷, Jean-Pierre Michel⁸, Yves Rolland⁹, Stéphane M. Schneider¹⁰, Eva Topinková¹¹, Maurits Vandewoude¹², Mauro Zamboni¹³

Table I. Criteria for the diagnosis of sarcopenia

Diagnosis is based on documentation of criterion 1 plus (criterion 2 or criterion 3)

Low muscle mass

2. Low muscle strength

3. Low physical performance

Assenza di perdita di peso

healthy

Verono

Prevalence of Sarcopenia according to EWGSOP criteria by GOLD stage in 622 subjects with stable COPD

Muscle wasting in heart failure: An overview[☆]

Stephan von Haehling^{a,b,*}, Lisa Steinbeck^a, Wolfram Doehner^{a,c}, Jochen Springer^{a,b,d}, Stefan D. Anker^{a,e}

The International Journal of Biochemistry & Cell Biology 45 (2013) 2257-2265

Our group recently studied the clinical effects of muscle wasting in patients with HF as defined using the criteria of sarcopenia (Fülster et al., 2013), i.e. appendicular lean mass corrected for height squared of 2 standard deviations or more below the mean of young healthy persons. Patients were prospectively enrolled as part of the Studies Investigating Co-morbidities Aggravating Heart Failure (SICA-HF) (von Haehling et al., 2010). Of 200 patients (mean age 66.9 ± 10.4 years, New York Heart Association class 2.3 ± 0.5 , left ventricular ejection fraction 38.9 ± 13.5 , body mass index 28.8 ± 5.1), 39 (19.5%) fulfilled the criteria of muscle wasting as assessed by DEXA scan. Patients with muscle wasting had significantly lower values for handgrip and quadriceps strength,

Sarcopenia in patients with heart failure with preserved ejection fraction: Impact on muscle strength, exercise capacity and quality of life

Alterazioni Nutrizionali nelle Malattie Cardiorespiratorie

Energy or Energy Protein Malnutrition

is present when insufficent energy or protein is available to meet metabolic demands, may develop because ofpoor dietary protein calorie intake, increased metabolic demands

Weight loss

With a decline in Fat mass Muscle mass Visceral protein

Prevalence of nutritional depletion in a large out-patient population of patients with COPD

39 out-patient centers389 patients with moderate to svere COPDAge 40-75 years

Black: BMI normal FFM depletion White:BMI depletion and normal FFM Dots : BMI and FFM depletion

Factors Leading to Sarcopenia in COPD patients American Thoracic Society (mod)

Disuse Inflammation Oxidative Stress- Smoking Exacerbations Corticosteroids Malnutrition

Am J Respir Crit Care Med Vol 189, Iss 9, pp e15-e62, May 1, 2014

Bed rest and muscle mass-2

Cigarette Smoke-induced Oxidative Stress

A Role in Chronic Obstructive Pulmonary Disease Skeletal Muscle Dysfunction

Esther Barreiro^{1,2}, Víctor I. Peinado^{2,3}, Juan B. Galdiz⁴, Elisabet Ferrer^{2,3}, Judith Marin-Corral¹, Francisco Sánchez^{1,2}, Joaquim Gea^{1,2}, and Joan Albert Barberà^{2,3}, on behalf of the ENIGMA in COPD Project

Muscle proteins oxidation levels

Oxidative stress is a contributor to COPD muscle dysfunction

Oxidants contained in cigarette induce oxidative modifications of key muscle biological structures

Am J Respir Crit Care Med Vol 182. pp 477-488, 2010

Quadriceps peak torque in patients with acute exacerbations and after 90 days of follow-up

Decrease in quadriceps strenght by 5% after 5 days of hospitalization

After 3 months only partial recovery

Mechanisms leading to muscle dysfunction in acute exacerbations

Steroid induced myopathy Acute

-Proximal and distal muscle weakness after 5-7 days of high dose intravenous treatment

-Recovery after treatment cessation prolonged up to 6 months

Chronic

-Proximal muscle weakness after long-term treatment with low doses of oral corticosteroids

-prognostic negative factor on survival in patiens with COPD

Atrophy of type II fibres (IIx) with less or no impact in type I fibres

Alterazioni Nutrizionali nelle Malattie Cardiorespiratorie

sarcopenia malnutrizione cachessia

Cachexia definition Fearon KC et al Clin Nutr 2006 Complex syndrome combining: -Weight loss (> 10%) -Reduced food intake (< 1'500 Kcal /day) -Systemic inflammation (CRP > 10 mg / l) + Anorexia & Weakness

www.thelancet.com/oncology Vol 12 May 2011

	Precachexia	Cachexia	Refractory cachexia	
Normal			Death	
	Weight loss ≤5% Anorexia and metabolic change	Weight loss >5% or BMI <20 and weight loss >2% or sarcopenia and weight loss >2% Often reduced food intake/ systemic inflammation	Variable degree of cachexia Cancer disease both procatabolic and not responsive to anticancer treatment Low performance score <3 months expected survival	
			healthy aging cer	Ń

Verono

	No. with		No. needing
Disease	disease	Cachexia	treatment
		%	
AIDS ²	900 000	35	315 000
Cancer	1 368 000	30	410 400
COPD	16 000 000	20	3 200 000
Kidney failure	375 000	40	150 000
Rheumatoid arthritis	2 100 000	10	210 000
Heart failure	4 800 000	20	960 000
Nursing home	1 600 000	20	320 000

The number of persons in the United States with cachexia¹

¹ The numbers are based on generally reported prevalences of disease and literature estimations of unintentional weight loss in these conditions. COPD, chronic obstructive pulmonary disease.

² The values may be too high in the era of the use of highly active antiretroviral therapy; some authors believe that 10% may be more appropriate.

Morley, J. E et al., 2006

The American Journal of CLINICAL NUTRITION

The wasting continuum in HF and COPD: from sarcopenia to cachexia

S von Haeling (mod)

Overlap Cachexia, Starvation and sarcopenia

Modificata da: Thomas Clinical Nutrition 2007, ESPEN Initiative for Diagnostic Criteria for Undernutrition 2014

An Official American Thoracic Society/European Respiratory Society Statement: Update on Limb Muscle Dysfunction in Chronic Obstructive Pulmonary Disease

François Maltais, Marc Decramer, Richard Casaburi, Esther Barreiro, Yan Burelle, Richard Debigaré, P. N. Richard Dekhuijzen, Frits Franssen, Ghislaine Gayan-Ramirez, Joaquim Gea, Harry R. Gosker, Rik Gosselink, Maurice Hayot, Sabah N. A. Hussain, Wim Janssens, Micheal I. Polkey, Josep Roca, Didier Saey, Annemie M. W. J. Schols, Martijn A. Spruit, Michael Steiner, Tanja Taivassalo, Thierry Troosters, Ioannis Vogiatzis, and Peter D. Wagner; on behalf of the ATS/ERS Ad Hoc Committee on Limb Muscle Dysfunction in COPD

Am J Respir Crit Care Med Vol 189, Iss 9, pp e15-e62, May 1, 2014

Limb muscle dysfunction is defined as the *morphological* and *functional* changes that are seen in limb muscles in patients with COPD

Limb muscle dysfunction is an important systemic consequence of COPD, because of its impact on physical activity, exercise tolerance, quality of life, and even survival.

Definition

Relation between muscle mass and strength and clinical outcomes in patients with COPD

Sarcopenia Treatment options in HF and COPD patients

Disuse Inflammation Smoking **Exacerbations** Malnutrition Corticosteroids Vitamin D deficency

Protein/Energy supplementation

Supplementation with exercise training Neuromuscular stimulation

Nutritional supplementation for stable chronic obstructive pulmonary disease (Review) Cochrane Database of Systematic Reviews 2012, Issue 12

Nutritional supplementation vs placebo: final weight

	Su	plemer	nt	C	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
1.2.1 Undernourishe	d								
DeLetter 1991	58.87	4.94	18	56.8	3.81	17	11.9%	2.07 [-0.84, 4.98]	
Efthimiou 1988	48.8	11.6	7	48.1	6.1	7	2.3%	0.70 [-9.01, 10.41]	
Fuenzalida 1990	60.1	6.01	5	70.48	7.94	4	2.4%	-10.38 [-19.78, -0.98]	←─────
Lewis 1987	53.3	3.05	10	50	4.15	11	11.3%	3.30 [0.20, 6.40]	
Otte 1989	47.7	21.3	13	45	18.2	15	1.0%	2.70 [-12.10, 17.50]	·
Rogers 1992	54.5	10.05	15	54.5	6.2	12	4.8%	0.00 [-6.18, 6.18]	
Schols 1995	56.6	7.2	39	55.2	7.6	25	9.3%	1.40 [-2.34, 5.14]	_
Sugawara 2010	47.9	5.4	17	46.5	5.9	15	8.8%	1.40 [-2.54, 5.34]	
van Wetering 2010	64.2	8.6	16	66.3	5.3	14	6.4%	-2.10 [-7.15, 2.95]	
Weekes 2009	55.7	4.93	30	52.6	5	25	12.9%	3.10 [0.46, 5.74]	-
Whittaker 1990	52.8	8.9	6	45	9.8	4	1.5%	7.80 [-4.16, 19.76]	
Subtotal (95% CI)			176			149	72.6%	1.65 [0.14, 3.16]	◆
Heterogeneity: Tau ² =	= 1.06; C	hi ² = 12	.06, df:	= 10 (P =	= 0.28);	l ² = 17	%		
Test for overall effect	: Z = 2.14	4 (P = 0.	03)						
1.2.2 Nourished									
Schols 1995	71.6	6	33	73.3	8	38	10.7%	-1.70 [-4.97, 1.57]	
Subtotal (95% CI)			33			38	10.7%	-1.70 [-4.97, 1.57]	
Heterogeneity: Not a	oplicable)							
Test for overall effect	: Z = 1.02	2 (P = 0.	31)						
1.2.3 Combined non	ulation o	funder	nourisl	ned and	nouris	hed			
Knowles 1988	57	9.75	12	63.26	11	12	3.0%	-6 25 [-14 42 1 02]	←
Steiner 2003	68.02	9.75	25	64.82	10.32	36	6.2%	3 21 [-1 98 9 40]	
Sugawara 2012	52.1	9.97	17	54.6	10.52	14	7.4%	-2.50[-7.04_2.04]	
Subtotal (95% CI)	J2.1	0.5	55	34.0	4.5	61	16.7%	-1.28 [-6.27, 3.72]	
Heterogeneity: Tau ² -	10.75	Chi ^z = 4	53 df:	= 2 (P =	0.10\·P	= 56%			
Test for overall effect	7 = 0.73	1/P = 0	.55, ur. 62)	- 2 (1 -	0.10),1	- 30 %	,		
restion overall effect	. 2 - 0.00	- (i = 0.	52)						
Total (95% CI)			264			248	100.0%	0.69 [-0.86, 2.24]	*
Heterogeneity: Tau ² =	= 3.04; C	hi ² = 22	.25, df:	= 14 (P =	= 0.07):	 2 = 37'	%		
Test for overall effect	Z = 0.88	3 (P = 0)	38)						-10 -5 0 5 10
Test for subaroup dif	Terences	: Chi ² =	4.11.0	f= 2 (P	= 0.13)	. ² = 51	.4%		Control better Supplement better

verond

Nutritional supplementation for stable chronic obstructive pulmonary disease (Review) Cochrane Database of Systematic Reviews 2012, Issue 12

Nutritional supplementation vs placebo: FFM

			Supplement	Control		Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Std. Mean Difference	SE	Tota	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
1.8.1 Undernourished							
Sugawara 2010 (1)	0.8329	0.3713	17	' 15	15.5%	0.83 [0.11, 1.56]	
Schols 1995 (2)	1.0495	0.2735	39	25	17.9%	1.05 [0.51, 1.59]	_ _
van Wetering 2010 (3)	1.5066	0.4282	15	i 14	14.1%	1.51 [0.67, 2.35]	
Subtotal (95% CI)			71	54	47.5%	1.08 [0.70, 1.47]	•
Heterogeneity: Tau² = 0	1.00; Chi² = 1.45, df = 2 (P	= 0.48);	I² = 0%				
Test for overall effect: Z	= 5.54 (P < 0.00001)						
400.04	-11						
1.8.2 Adequately nouri	shed						
Schols 1995	0.2651	0.239	33	38	18.7%	0.27 [-0.20, 0.73]	
Subtotal (95% CI)			33	38	18.7%	0.27 [-0.20, 0.73]	-
Heterogeneity: Not appl	licable						
Test for overall effect: Z	= 1.11 (P = 0.27)						
1.8.3 Combined popula	tion of undernourished a	and nour	ished patient	s			
Steiner 2003	-03712	0 2642	. 25	; 35	18.1%	-0.37 (-0.89, 0.15)	
Sugawara 2012 (4)	0.3532	0.2642	17	, 00 ' 14	15.7%	0.35 [-0.36 1.07]	_ _
Subtotal (95% CI)	0.0002	0.0011	42	49	33.8%	-0.05 [-0.76, 0.65]	-
Heterogeneity: Tau ² = 0	116 ⁻ Chi² = 2.59. df = 1.(P	= 0.11).	l² = 61%				T
Test for overall effect: Z	= 0.15 (P = 0.88)	0.117					
Total (95% CI)			146	141	100.0 %	0.57 [0.04, 1.09]	◆
Heterogeneity: Tau ² = 0	.33; Chi ² = 22.28, df = 5 (P = 0.00	05); I² = 78%			-	
Test for overall effect: Z	= 2.11 (P = 0.03)						-Z -1 U 1 Z Control bottor, Supplement bottor
Test for subgroup differ	rences: Chi² = 11.33, df =	2 (P = 0)	003), I² = 82.3	%			Control better Supplement better
(1) this is FFMI (kg/m ⁼) .						
(2) used bio-electrical	l resistance to measure F	FFM, data	a sent by autho	or (Dr Sch	ols)		
(3) this is FFMI (kg/m²)						a
(4) FFM, kg							
						Cochran	

Nutritional supplementation for stable chronic obstructive pulmonary disease (Review) Cochrane Database of Systematic Reviews 2012, Issue 12

Nutritional supplementation vs placebo: change in function

			Experimental	Control		Mean Difference	Mean Difference
Study or Subgroup	Mean Difference	SE	Total	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
1.13.1 6-minute walk test							
DeLetter 1991 (1)	36.58	8.7393	18	17	33.1%	36.58 [19.45, 53.71]	
Efihimiou 1988 (2)	47	23.3421	7	7	11.1%	47.00 [1.25, 92.75]	
Sugawara 2010 (3)	54.12	15.1764	17	13	20.0%	54.12 [24.37, 83.87]	
Sugawara 2012 (4)	105	37.5965	17	14	5.0%	105.00 [31.31, 178.69]	—•—
van Wetering 2010 (5)	21.5	9.6125	16	14	30.9%	21.50 [2.66, 40.34]	•
Subtotal (95% CI)			75	65	100.0%	39.96 [22.66, 57.26]	◆
Heterogeneity: Tau ² = 1	59.25; Chi² = 7.30, d	f = 4 (P =	0.12); F = 45%				
Test for overall effect: Z	= 4.53 (P < 0.00001)	1					
1.13.2 12-minute walk	test						_
Otte 1989	-130.3	79.9521	13	15	50.1%	-130.30 [-287.00, 26.40]	
Rogers 1992	130.49	80.3839	15	12	49.9%	130.49 [-27.06, 288.04]	
Subtotal (95% CI)			28	27	100.0%	-0.04 [-255.61, 255.53]	
Heterogeneity: Tau ² = 2	7578.76; Chi ^z = 5.29	, df = 1 (P	= 0.02); l ² = 81 ^o	%			
Test for overall effect: Z	= 0.00 (P = 1.00)						
1.13.3 Incremental shu	ttle walk test						
Steiner 2003 (6)	17.4	73.3717	42	43	100.0%	17.40 [-126.41, 161.21]	
Subtotal (95% CI)			42	43	100.0%	17.40 [-126.41, 161.21]	
Heterogeneity: Not appl	icable						
Test for overall effect: Z	= 0.24 (P = 0.81)						

Test for subgroup differences: $Chi^2 = 0.19$, df = 2 (P = 0.91), $l^2 = 0\%$

200

100 Favours control Favours experimenta

-200 -100

Ó.